Хризотил- асбест

ХРИЗОТИЛ_ АСБЕСТ

Хризотил-асбест – это тонковолокнистый белый или зеленовато-желтый минерал (3 MgO·2 SiO2·2H2O) c шелковистым блеском, образующий прожилки в ультраосновных породах, преимущественно в перидотитах. Прожилки имеют поперечно-волокнистое строение с длиной волокон от долей миллиметра до 5–6 см (изредка до 16 см) толщиной менее 0,0001 мм. Замечательным свойством этого минерала является способность сминаться и распушаться в тонковолокнистую массу, подобную льняной или хлопковой, пригодной для изготовления несгораемых тканей. Это свойство давать пряжу и обусловило второе название хризотил-асбеста – «куделька», применявшееся ранее на Урале.

Первое литературное упоминание о находках хризотил-асбеста на Урале относится к 1720 г., когда В. В. Геннин сообщил Петру I, что близ Екатеринбурга найдена «каменная кудель». Промышленное месторождение хризотил-асбеста – Баженовское –было открыто на Урале в 1885 г. в 60 км к северо-востоку от Екатеринбурга, а в 1887 г. началась его эксплуатация.

Месторождения хризотил-асбеста на Урале залегают среди массивов ультраосновных пород, распространенных в основном в Тагило-Магнитогорской и Восточно-Уральской зонах. Они приурочены к разрывным нарушениям, в которых ультраосновные породы раздроблены и сильно трещиноваты. В этих трещинах и образовались многочисленные прожилки хризотил-асбеста, местами достигающие промышленных концентраций. Крупные скопления хризотил-асбеста образовались там, где в ультраосновные породы внедрились граниты. Предполагается, что внедрение гранитов прогревало ультраосновные породы и способствовало растворению содержащихся в них химических элементов, в частности магния и кремния. Эти элементы находились в горячих водных растворах, заполняющих трещины. По мере охлаждения ультраосновной породы в трещинах отлагался хризотил-асбест. Поперечно-волокнистое его строение объясняется тем, что по мере расширения трещин зародыши кристаллов, укрепленные на их стенках, вытягивались перпендикулярно трещинам.

На Урале выявлен ряд месторождений хризотил-асбеста: Баженовское, Алапаевское, Лесное, Красноуральское, Луковое, Режевское и др. – в Свердловской области; Таловское, Куликовское, Ново-Татищевское, Брединское – в Челябинской области; Уразовское и Абзаковское – в Башкортостане; Киембаевское, Псянчинское, Ишкильдинское – в Оренбургской области; Джетыгаринское – в Кустанайской области Казахстана. В настоящее время добыча хризотил-асбеста осуществляется лишь на трех месторождениях: Баженовском, Киембаевском и Джетыгаринском.

 

Товарный хризотил-асбест состоит из смеси волокон различной длины и их агрегатов. Агрегаты асбеста с недеформированными волокнами размером в поперечнике более 2 мм называют "кусковым асбестом", а менее 2 мм - "иголками". "Распушенным" называют асбест, в котором волокна тонки, деформированы и перепутаны. Частицы сопутствующей породы и асбестовое волокно, прошедшее через сито с размерами стороны ячейки в свету 0.25 мм, называют "пылью". Асбест хризотиловый в зависимости от длины волокон подразделяется на восемь сортов(от 0 до 7).

Описание минерала

Греч. “асбестос”—нетленный, неразрушимый. Среди разностей асбеста выделяют серпентин-асбесты: хризотил-асбест и антигорит-асбест (баститовый асбест), амфибол-асбесты: тремолит-асбест, актинолит-асбест, крокидолит-асбест, амозит-асбест.

Асбестом называют минералы группы серпентинов или амфиболов волокнистого строения, способные при механическом воздействии разделяться на тончайшие волоконца. По химическому составу асбестовые  минералы являются водными силикатами магния, железа, кальция и натрия. Содержание воды в асбесте группы серпентина составляет 13-14.5 %, а в группе амфиболов (в зависимости от вида) 1,5 - 3%.

Волокнистое строение наиболее ярко выражено у асбеста серпентиновой группы, куда относится только один вид асбеста - хризотил-асбест, поэтому он больше всего применяется в промышленности. Хризотил-асбест обладает высокой прочностью на разрыв по оси волокнистости. Наибольшую прочность имеют волокна асбеста, осторожно отделённые от кускового асбеста. В зависимости от эластичности волокна различают три разновидности хризотил-асбеста: нормальную, полуломкую и ломкую. Такое деление условно, так как в действительности не наблюдается резких переходов от одной разновидности к другой. Важная характеристика асбеста - модуль упругости. Средние значения модуля упругости хризотил-асбеста колеблются от 16104 до 21104 Мпа.

Химический состав. Весьма изменчивый; например, амфибол-асбест: окись магния (MgO) 6 — 7%, окись и закись железа (FeO, Fe2O3) 34 — 44%, окись алюминия (А12O3) 5 — 10%, двуокись.кремния (SiO2) 49 — 53%; хризотил-аобест: окись магния (MgO) 38—41%, окись алюминия (Al2O3) 1 — 1,5%, окись и закись железа (FeO, Fe2О3) 0,3 — 4%, двуокись кремния (SiO2) 41 — 43%, вода (Н2О) 13 — 14%.

Хризотил. Листовой силикат, состоящий из лежащих в одной плоскости соединенных кремнеземных тетраэдров, покрытых слоем брусита. Кремнеземно-бруситовые пластины слегка изогнуты из-за структурного несовпадения, выражающегося в скручивании пластин и образования длинной полой трубочки. Из таких трубочек и образуются составные пучки волокон хризотила. Химический состав хризотила однороден в отличие от разновидностей амфибол-асбеста. Присутствие некоторого количество оксидов является результатом загрязнения при образовании минерала в скалистой породе. Некоторые из этих элементов могут входит в структуру, а так же могут присутствовать в качестве главных элементов небольших концентраций отдельных разновидностей минерала, входящих в пучок волокон. Длинные эластичные и изогнутые волокна хризотила обычно сплетены в пучки с пушистыми концами. Такие пучки соединены водородными связями иили каким-нибудь твердым веществом не входящим в состав волокна. Длина хризотиловых волокон, встречающихся в природе, колеблется от 1 до 20 мм, с отдельными экземплярами до 100 мм. Хризотил чрезвычайно чувствителен к кислоте, хотя меньше подвержен воздействию гидроокиси натрия (едкого натра), чем любые амфибольные волокна.

Амфибольные минералы представляют собой двойные цепочки кремнеземных тетраэдров, поперечно связанные катионовыми мостиками. Химический и физический состав различных амфибол асбестов весьма разнообразны. Состав рабочего образца совпадает с предполагаемой теоретической чрезвычайно редко. Однако при идентификации различных волокон для удобства работы пользуются теоретическими допусками.

Крокидолит (рибекит-асбест) Типичные для крокидолита пучки волокон распадаются на более короткие и тонкие волокна легче, чем волокна других амфибол асбестов. Однако образующиеся таким образом волокна обычно не так малы в диаметре, как волокна хризотила. В сравнении с другими амфиболами или хризотилом крокидолит обладает сравнительно плохой жаростойкостью, но его волокна широко применяются там, где требуется высокая кислото устойчивость. Крокидолитовые волокна обладают от умеренной до хорошей гибкостью, слабой прядомостью и меняющейся от мягкой до жесткой текстурой. В отличие от хризотила крокидолит обычно бывает загрязнен органическими примесями, в том числе небольшим количеством полициклических ароматических углеводородов, таких как бензапирен.

Амозит (грюнерит-асбест) Волокна амозита обычно длиннее, чем у крокидолита. Большинство амозитовых волокон имеют прямые края и характерные прямоугольные окончания осей.

Антофиллит-асбест представляет собой сравнительно редкий волокнистый призматический магниево-железистый амфибол, который иногда встречается в виде примесей в месторождениях талька. Характерно, что волокна антофиллита крупнее, чем у других распространенных форм асбеста.

Тремолит и актинолит-асбест Тремолит-асбест это моноклинный кальциево-магниевый амфибол. Актинолит-асбест это его железозамещенный дериват. Оба вида волокон редко обнаруживаемые в самостоятельных месторождениях, чаще всего встречаются как загрязняющие примеси в других месторождениях асбеста. Первый как примесь в месторождениях хризотила и талька, второй в амозитовых месторождениях. Тремолит-асбестовые волокна разнятся по размеру, но могут приближаться к величине волокон крокидолита и амозита.

Физические свойства. Асбест является жаростойким материалом и может эксплуатироваться при температуре 500–550оС, кратковременно — до 700оС. Сорта асбеста с минимальным количеством примесей неэлектропроводны и обладают хорошими электроизолирующими свойствами. Высокая поверхностная энергия и развитая поверхность придают асбесту хорошие сорбционные свойства к полярным веществам. Все виды асбеста имеют высокую щелочестойкость, однако в растворах кислот хризотил-асбест теряет свои свойства из-за растворения магниевых окислов. Крокидолит имеет лучшую кислотостойкость.

Совокупность уникальных свойств хризотил-асбеста таких как: способность расщепляться на тончайшие эластичные волокна, обладающие высокой механической прочностью, несгораемость и теплостойкость, высокий коэффициент трения. Низкая проводимость тепла, электрического тока и звука, атмосферостойкость, щелочеустойчивость и стойкость по отношению к морской воде, высокая адсорбирующая активность и способность к образованию устойчивых композиций с различными вяжущими материалами позволяет использовать хризотил-асбест практически во всех областях промышленности.

В основном же его используют для производства асбестоцементных материалов для строительства, производства асботехнических изделий для автомобильной, авиационной, тракторной, химической, электрохимической отраслей промышленности, а также для судостроения, машиностроения, в оборонной промышленности и ракетостроении. Количество видов изделий, вырабатываемых из асбеста в чистом виде или в композиции с другими материалами, составляет более трех тысяч наименований. Уникальность асбеста заключается не только в многообразии его применения, но и в полном отсутствии природных аналогов и искусственных заменителей, обладающих такими же качествами. Промышленное использование хризотил-асбеста экономически выгодно ввиду его доступности, дешевизны и долговечности.

Структура асбеста очень интересна. Так, например, плоскостные молекулы хризотилового асбеста имеют слоистую несимметричную структуру, вследствие чего они сворачиваются в очень тонкую трубочку (своеобразный «рулет»). Диаметр такого «элементарного» игольчатого кристалла у хризотил-асбеста 10–30 нм, у крокидолита — 50–99 нм. Микроструктура асбеста — игольчатые кристаллы и их сростки. Товарный асбест представляет собой комплексы из сотен и тысяч соединенных вместе элементарных игольчатых кристаллов, имеющих поперечник около 0,1–0,5 мкм.

Практическое значение. Важное сырье для изготовления огнестойкой, жарозащитной и кислотозащитной одежды, огнеупорных строительных материалов, теплоизоляционного материала и т. д. Качества и физические свойства, например эластичность или хрупкость, определяют сферу применения минерала.

Происхождение. Гидротермальное, в условиях тектонических подвижек.

Месторождения. Урал, Сибирь (СССР); Канада; Трансвааль (Южная Африка) и др. Проявления повсеместны в областях развития серпентинитов, например Цеблиц в Рудных горах, Кушнаппель, Хоэнштейн-Эрнстталь, Вальдгейм и др. (ГДР).